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Abstract A new information-geometric approach to chaotic dynamics on curved statistical
manifolds based on Entropic Dynamics (ED) is proposed. It is shown that the hyperbolicity
of a non-maximally symmetric 6 N-dimensional statistical manifold M, underlying an ED
Gaussian model describing an arbitrary system of 3N degrees of freedom leads to linear
information-geometric entropy growth and to exponential divergence of the Jacobi vector
field intensity, quantum and classical features of chaos respectively.
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1 Introduction

The unification of classical theory of gravity with quantum theories of electromagnetic,
weak and strong forces is one of the major problems in modern physics. Entropic Dynamics
(ED) [1], namely the combination of principles of inductive inference (Maximum relative
Entropy Methods, ME methods) [2—4] and methods of Information Geometry (Riemannian
geometry applied to probability theory, IG) [5], is a theoretical framework constructed on
statistical manifolds and it is developed to investigate the possibility that laws of physics,
either classical or quantum, might reflect laws of inference rather than laws of nature. Exam-
ples of dynamics that can be deduced from principles of probable inference are not absent in
physics. The theory of thermodynamics [6, 7] and to a certain degree, quantum mechanics
[8, 9], are examples of fundamental physical theories that could be derived from general
principles of inference. In constructing an ED-model, the first step is to identify the ap-
propriate variables (relevant information) describing the system and thus the corresponding
space of macrostates. This is the most delicate step because there is no systematic way to
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search for the right macro variables; it is a matter of intuition, trial and error. Once the in-
formation and normalization constraints are identified, using ME methods, the probability
distribution characterizing the system can be computed. Finally, using IG methods, a Fisher-
Rao information metric [10, 11] can be assigned to the space of macrostates of the system.
Given the Fisher-Rao information metric, the geometric structure of the manifold underly-
ing the ED can be studied in detail: metric tensor, Christoffel connection coefficients, Ricci
and Riemann statistical curvature tensors, sectional and Ricci scalar curvatures, Jacobi and
Killing fields can be calculated. ME methods are inductive inference tools. They are used
for updating from a prior to a posterior distribution when new information in the form of
constraints becomes available. Basically, information is processed using ME methods in the
framework of Information Geometry. The ED model follows from an assumption about what
information is relevant to predict the evolution of the system. In this work, we focus only
on reversible aspects of the ED model. In this case, given a known initial macrostate and
that the system evolves to a final known macrostate, we investigate the possible trajectories
of the system. Given two probability distributions, a notion of “distance” between them is
provided by IG.

In this paper, our objective is to report some relevant results obtained in the realm of
chaos theory (hypersensitivity to initial conditions) using the ED formalism. It is known
there is not a well defined unifying characterization of chaos in classical and quantum
physics [12, 13]. In the Riemannian Geometric Approach [14, 15] to classical chaos, the
search for a link between the Jacobi field intensity and the Ricci (sectional) curvature of
the dynamical manifold is under investigation [16]. In the Zurek-Paz criterion of quan-
tum chaos [17, 18], instead, the search for a potential link between the linearity of the
entropy growth and the curvature of the dynamical manifold underlying chaotic systems
is still open. In our information-geometric approach, it is shown that these three indica-
tors of chaos (Curvature-Jacobi Field Intensity-Entropy) are linked: the hyperbolicity of
a 6/N-dimensional statistical manifold M; underlying an ED Gaussian model leads to
linear information-geometric entropy growth and to exponential divergence of the Jacobi
vector field intensity, quantum and classical features of chaos respectively. We assume
that the arbitrary (physical-biological) system under investigation has 3N degrees of free-

dom {x® Z;l:‘z';é’v , each one described by two pieces of relevant information, its expecta-

tion value (x®) and variance Ax® = /((x\*) — (x*))?). This leads to consider an ED

model on a 6 N-dimensional statistical manifold M. First, we show that M; has a con-
stant negative Ricci curvature proportional to the number of degrees of freedom of the sys-
tem, R, = —3N. Second, we suggest the information-geometric analog of the Zurek-Paz
quantum chaos criterion. It is shown that the system explores statistical volume elements
on M; at an exponential rate. We define an information-geometric entropy (IGE) of the
system, Spq,. We show that Sy, increases linearly in time (statistical evolution parame-
ter) and it is proportional to the number of degrees of freedom of the system and to the
information-geometric analogue of the Lyapunov exponents [19]. Finally, we show that the
geodesics on the manifold M, are described by hyperbolic trajectories. Using the Jacobi-
Levi-Civita (JLC) equation for geodesic spread, it is shown that the intensity of the Jacobi
vector field intensity Ju  diverges exponentially (standard feature of classical chaos) and it
is proportional to the number of degrees of freedom of the system. In conclusion, the Ricci
scalar curvature R 4, , the information-geometric entropy Sa4, and the Jacobi vector field
intensity J,, are proportional to the number of Gaussian-distributed microstates of the sys-
tem. The relevance of this proportionality will be discussed in some detail in Sect. 3 of this
article.

) def
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The layout of this paper is as follows. In Sect. 2, we describe the ED Gaussian model
being studied. In Sect. 3, we introduce the information-geometric indicators of chaos for
our theoretical model. Finally, in Sect. 4 we present our final remarks.

2 Entropic Dynamical Gaussian Model

We consider an ED model whose microstates span a 3N-dimensional space labelled by
the variables {X} = {(x®,¥®, ..., ™} with ¥@® = &, 0 X, @ =1,...,N and
x® e R with a = 1,2,3. We assume the only testable information pertaining to the quan-
tities x® consists of the expectation values (x*)) and the variance Ax®. The set of
these expected values define the 6 N-dimensional space of macrostates of the system.
A measure of distinguishability among the macrostates of the ED model is achieved by

assigning a probability distribution P(f( |(:)) to each 6N-dimensional macrostate @ &
{(VOD @D 9y aies = {((x ), Ax ) Y3y -pairs With & = 1,2,...,N and a = 1,2,3.
The process of assigning a probability distribution to each state provides Mg with a met-
ric structure. Specifically, the Fisher-Rao information metric defined in (7) is a measure
of distinguishability among macrostates. It assigns an IG to the space of states. Con-
sider an arbitrary physical system evolving over a 3/N-dimensional space. The variables
(X) E (30, 7 ™) label the 3N-dimensional space of microstates of the system.
We assume that all information relevant to the dynamical evolution of the system is con-
tained in the probability distributions. For this reason, no other information is required. Each
macrostate may be thought as a point of a 6 N-dimensional statistical manifold with coor-
dinates given by the numerical values of the expectations (V9(*) and P6(*). The available
information can be written in the form of the following 6 N information constraint equations,

+o0
<x[(10t)> — / dx;a)xa(a) Pa(ct) (xéa) |(1)9(§01)7 (2)9(500)7
—o0

too : M
Ax® = [ f dx® (@ — [ @))? P (x| Vg, <2>9§“>)} .

o]

The probability distributions Pa("‘) in (1) are constrained by the conditions of normalization,

+o0
/ dx(@ P@ (x| V@ @) — 1. @)

oo

Information theory identifies the Gaussian distribution as the maximum entropy distribution
if only the expectation value and the varlance are known [20]. ME methods [2-4] allow
us to associate a probability distribution P (X |®) to each point in the space of states @
The distribution that best reflects the information contained in the prior distribution m(X )

updated by the information ({x®), Ax®) is obtained by maximizing the relative entropy
. L P(X|®
S(@):—/dWXP(Xl@)log(Lq)), 3)

m

where m(X) is the prior probability distribution. As a working hypothesis, the prior m (X) is
set to be uniform since we assume the lack of prior available information about the system
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(postulate of equal a priori probabilities). Upon maximizing (3), given the constraints (1)
and (2), we obtain

PR16) = [ T[] P (5 1 o) “

a=1a=1

where

(&)

PO (x@|u@, 6@) = (27[0@]))” %exp[ w]

2(0.)?

. . . def def
and, in standard notation for Gaussians, V9@ = (x @) = p@, Pg@ = Ax@ =@ The

probability distribution (4) encodes the available information concerning the system. Note
that we have assumed uncoupled constraints among microvariables x. In other words,
we assumed that information about correlations between the microvariables need not to be
tracked. This assumption leads to the simplified product rule (4). However, coupled con-
straints would lead to a generalized product rule in (4) and to a metric tensor (7) with
non-trivial off-diagonal elements (covariance terms). Correlation terms may be fictitious.
They may arise for instance from coordinate transformations. On the other hand, correla-
tions may arise from external fields in which the system is immersed. In such situations,
correlations among x* effectively describe interaction between the microvariables and the
external fields. Such generalizations would require more delicate analysis.

We cannot determine the evolution of microstates of the system since the available in-
formation is insufficient. Not only is the information available insufficient but we also do
not know the equation of motion. In fact there is no standard “equation of motion”. In-
stead we can ask: how close are the two total distributions with parameters (u*, o) and
(1 +dpl”, 0, 4 do*)? Once the states of the system have been defined, the next step
concerns the problem of quantifying the notion of change from the macrostate © to the
macrostate ® + d®. A convenient measure of change is distance. The measure we seek is
given by the dimensionless “distance” ds between P(XI@) and P(X|® + d@),

ds* = g,,d®"d®" (6)
where
-~ . 3logP(X|®) dlog P(X|O)
,= [ dXP(X|® 7
8 / (X16)~—= = o @)

is the Fisher-Rao metric [10, 11]. Substituting (4) into (7), the metric g,,, on M, becomes a
6N x 6N matrix M made up of 3N blocks M, with dimension 2 x 2 given by,

Moo (@ 0 8
2><2—( 0 2 % (O'a(a))2> ( )

withae=1,2,..., N and a = 1,2, 3. From (7), the “length” element (6) reads,

2
ds* = Z Z[( ;a))z z(lm)z + doa(a)zi|' (C))

pr (04”)?

We bring attention to the fact that the metric structure of M; is an emergent (not funda-
mental) structure. It arises only after assigning a probability distribution P(X |O) to each
state ©.
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3 Information-Geometric Indicators of Chaos

In this section, we introduce the relevant indicators of chaoticity within our theoretical for-
malism. They are the Ricci scalar curvature R o4, (or, more correctly, the sectional curvature
K ag [21]), the Jacobi vector field intensity Jaqg and the IGE S, .

3.1 Ricci Scalar Curvature

Given the Fisher-Rao information metric, we use standard differential geometry methods
applied to the space of probability distributions to characterize the geometric properties
of M. Recall that the Ricci scalar curvature R is given by,

R=g""R,, (10)
where g""g,, = 84 so that g"" = (g,v)”". The Ricci tensor R, is given by,

Ry =8I, — 8%, + T¢I —T".T¢ (11)

jnay nvtoen et vnt

The Christoffel symbols I'j,, appearing in the Ricci tensor are defined in the standard way,

p L e

F,w = 58 (8ugsv + avgus - 8€g;w)- (12)
Using (9) and the definitions given above, we can show that the Ricci scalar curvature be-
comes

R, = —3N <0. (13)

From (13) we conclude that M; is a 6 N-dimensional statistical manifold of constant nega-
tive Ricci scalar curvature. A detailed analysis on the calculation of Christoffel connection
coefficients using the ED formalism can be found in [22-24]. Furthermore, it can be shown
that M is not a pseudosphere (maximally symmetric manifold) since its sectional curva-
ture is not constant. As a final remark, we emphasize that the negativity of the Ricci scalar
R, implies the existence of expanding directions in the configuration space manifold M.
Indeed, since R o4 is the sum of all sectional curvatures of planes spanned by pairs of or-
thonormal basis elements [21], the negativity of the Ricci scalar is only a sufficient (not
necessary) condition for local instability of geodesic flow. For this reason, the negativity of
the scalar provides a strong criterion of local instability.

3.2 Information-Geometrodynamical Entropy

At this point, we study the trajectories of the system on M. We emphasize ED can be
derived from a standard principle of least action (Maupertuis-Euler-Lagrange-Jacobi-type)
[1, 25]. The main differences are that the dynamics being considered here, namely Entropic
Dynamics, is defined on a space of probability distributions M, not on an ordinary linear
space V and the standard coordinates g,, of the system are replaced by statistical macrovari-
ables ®*. The geodesic equations for the macrovariables of the Gaussian ED model are
given by [26],

d*er , de"der
dr? o dt dt

(14)
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withu =1,2,...,6N. Observe that the geodesic equations are nonlinear, second order cou-
pled ordinary differential equations. These equations describe a dynamics that is reversible
and their solution is the trajectory between an initial and a final macrostate. The trajec-
tory can be equally well traversed in both directions. We seek the explicit form of (14) for
the pairs of statistical coordinates (1, o(*). Substituting the explicit expression of the
Christoffel connection coefficients into (14), the geodesic equations for the macrovariables
1@ and o associated to the microstate x* become,

d?p® 2 dp® datf"‘)_o d*c@ 1 <daa(“))2 1 <d,u(”‘)> _0

> 4@ dt dt 2 @\ dt 209\ dt

15)

witha =1,2,..., N anda =1, 2, 3. This is a set of coupled ordinary differential equations,
whose solutions are

(B)?
(@) BW exp(—BW
(1) = A o= — (f)( e (B()w)z +C@. (16)
exp(—28, ') + S 2 exp(—28, 't) + S8 )

The quantities B, C), B{*) are real integration constants and they can be evaluated once
the boundary conditions are specified. We observe that since every geodesic is well-defined
for all temporal parameters T, M constitutes a geodesically complete manifold [27]. It
is therefore a natural setting within which one may consider global questions and search
for a weak criterion of chaos [15]. Furthermore, since |,u (1) < +oo and |a(”‘)(r)| <
+ooVr € RT, Va=1,2,3 and Ya = 1,..., N, the parameter space {@} (homeomorphic
to M) is compact. The compactness of the configuration space manifold M, assures the
folding mechanism of information-dynamical trajectories (the folding mechanism is a key-
feature of true chaos, [15]).

We are interested in investigating the stability of the trajectories of the ED model con-
sidered on M. It is known [25] that the Riemannian curvature of a manifold is closely
connected with the behavior of the geodesics on it. If the Riemannian curvature of a mani-
fold is negative, geodesics (initially parallel) rapidly diverge from one another. For the sake
of simplicity, we assume very special initial conditions: B = A, B =1 e R*, C® =0,
VYa=1,2,...,N and a = 1, 2, 3. However, the conclusion we reach can be generalized to
more arbltrary initial conditions. Recall that M; is the space of probability distributions
P(X |®) labeled by 6N statistical parameters ©. These parameters are the coordinates for
the point P, and in these coordinates a volume element d V,, reads,

2 dpdo ™ (17)

AV, = /2dV O = ]_[ ]_[

()
a=1a=1 ( “a )2
where g = | det(g,,)|. The volume of an extended region AV, (7; A) of M is defined by,
w @ ol @
def (Dt)d () 18
AV, (1:3) = H H oo Lo, W o (18)
a=1a=1 o

where 1@ (1) and o/*(7) are given in (16) and where the scalar A is the chosen quantity to

define the one-parameter family of geodesics Fg,, (1) = &ef {O’fws (T3 A)}g‘:ﬂéy"’w. The quan-

tity that encodes relevant information about the stability of neighboring volume elements is
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the average volume V4, (7; A) defined as [23, 24],

e 1 T—00
Vo, (T; 1) = (AVpy, (/s )\))Td_f—/ AV, (T 0)dt =~ N, (19)
T Jo

This asymptotic regime of diffusive evolution in (19) describes the exponential increase of
average volume elements on M. The exponential instability characteristic of chaos forces
the system to rapidly explore large areas (volumes) of the statistical manifolds. From equa-
tion (19), we notice that the parameter A characterizes the exponential growth rate of average
statistical volumes Va4, (t; 1) in M. This suggests that A may play the same role ordinarily
played by Lyapunov exponents. Indeed, it is interesting to note that this asymptotic behavior
appears also in the conventional description of quantum chaos where the von Neumann en-
tropy increases linearly at a rate determined by the Lyapunov exponents. The linear entropy
increase as a quantum chaos criterion was introduced by Zurek and Paz [17, 18]. In our
information-geometric approach a relevant variable that can be useful to study the degree of
instability characterizing the ED model is the IGE quantity defined as [23, 24],

S, & lim log Vg, (73 4). (20)

The IGE is intended to capture the temporal complexity (chaoticity) of ED theoretical mod-
els on curved statistical manifolds M by considering the asymptotic temporal behaviors
of the average statistical volumes occupied by the evolving macrovariables labelling points
on M.

Substituting (18) in (19), (20) becomes,

(a)(r) (a)(r)
T—>00
S, = lim log) — du("‘)do(“) dt’'} ~ 3Nar.
(@ (@) ﬂt) 2
© JoiP0 (05)

21
Before discussing the meaning of (21), recall that in a rigorous examination of the en-
tropy approach to the classical-quantum correspondence problem, Zurek and Paz con-
sider the completely tractable model of an inverted harmonic oscillator with a potential

alal

Vix)=— 2— coupled to a high temperature (harmonic) bath. In their case, €2 is analogous
toa Lyapunov exponent in a genuinely chaotic system. On calculating the rate of change of
von Neumann entropy, they show that [17, 18]

—>00
Svon Neumann(r) ~ Qr (22)

where Syon Neumann (T) = —17 (0, (t) log p, (7)) is the von Neumann entropy of the system
[28] and p,(7) is the reduced density matrix of the system at time 7. The quantum entropy
production rate is determined by the classical instability parameter 2. Given that the clas-
sical Lyapunov exponent to which €2 is analogous is equal to the Kolmogorov-Sinai (KS)
entropy of the system [28], this is indeed a remarkable characterization. It suggests that after
a time, a quantum, classically chaotic system loses information to the environment at a rate
determined entirely by the rate at which the classical system loses information as a result of
its dynamics, namely, the KS entropy.

In analogy to the Zurek-Paz quantum chaos criterion in its classical reversible limit [29],
we suggest a classical information-geometric criterion of linear IGE growth. The entropy-
like quantity Sy, in (21) is the asymptotic limit of the natural logarithm of the statistical
weight (AV,, ), defined on M; and it grows linearly in time, a quantum feature of chaos.
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Indeed, equation (21) may be considered the information-geometric analog of the Zurek-Paz
chaos criterion. In our chaotic ED Gaussian model, the IGE production rate is determined by
the information-geometric parameter A characterizing the exponential growth rate of average
statistical volumes V4, (7; A) in M.

3.3 Jacobi Field Intensity

Finally, we consider the behavior of the one-parameter family of neighboring geodesics

Fong ) E 1O, (x; W)Y/ 50 where,
o Aexp().
> X T
,ufl"‘)(r; A) = 2—’\[\2, o;"‘)(r; AN)=— ———— (23)
exp(—2At) + o7 exp(—2At) + 8A2
with o« =1,2,..., N and a = 1, 2, 3. The relative geodesic spread on a (non-maximally

symmetric) curved manifold as M; is characterized by the Jacobi-Levi-Civita equation, the
natural tool to tackle dynamical chaos [21, 30],
D25@* RICK 007

R" §O°
Dt? T ot ot

=0 (24)

where the covariant derivative 2 in (24) is defined as [31],

D*0"  d*3er N . d8©* deF et d*e’ L de' deFf
D2~ dr? gy dr dt dr? By 4T dt
de’ deFf
+ I, —— ——350°, 25
dt drt (25)
and the Jacobi vector field J* is given by [26],
AOM(T; A

Jr=s0" s o = (%) Sh. (26)

Equation (24) forms a system of 6N coupled ordinary differential equations linear in the
components of the deviation vector field (26) but nonlinear in derivatives of the metric (7).
It describes the linearized geodesic flow: the linearization ignores the relative velocity of the
geodesics. When the geodesics are neighboring but their relative velocity is arbitrary, the
corresponding geodesic deviation equation is the so-called generalized Jacobi equation [32].
The nonlinearity is due to the existence of velocity-dependent terms in the system. Neighbor-
ing geodesics accelerate relative to each other with a rate directly measured by the curvature
tensor Ryg,s. Substituting (23) in (24) and neglecting the exponentially decaying terms in
8®" and its derivatives, integration of (24) leads to the following asymptotic expression of
the Jacobi vector field intensity,

1 100 .
ms =11 = (gunJ*J")2 ~ 3Ne™. 2N

Further details on the derivation of this result are in [23, 24]. We conclude that the geo-
desic spread on M is described by means of an exponentially divergent Jacobi vector field
intensity Ja,, a classical feature of chaos. In our approach the quantity A,

o 2 fim [l log<H Jaas (©) m (28)

oo T JMS(O)

would play the role of the conventional Lyapunov exponents.
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In conclusion, the main results of this work are encoded in the following equations,

T—>00 T—>00

R, = —3N, Sm, ~ 3NAt, Jmg ~ 3NeV. (29)
The IGE grows linearly as a function of the number of Gaussian-distributed microstates
of the system. This supports the fact that S, may be a useful measure of temporal com-
plexity [33, 34]. Furthermore, these three indicators of chaoticity, the Ricci scalar curvature
R, the information-geometric entropy Sy, and the Jacobi vector field intensity Ja
are proportional to 3N, the dimension of the microspace with microstates {)? } underlying
our chaotic ED Gaussian model. This proportionality leads to the conclusion that there is
a substantial link among these information-geometric measures of chaoticity since they are
all extensive functions of the dimensionality of the microspace underlying the macroscopic
chaotic entropic dynamics, namely

RMANSMA-N]MS- (30)

Equation (30) represents the fundamental result of this work: curvature, information-
geometric entropy and Jacobi field intensity are linked within our formalism. We are aware
that our findings are reliable in the restrictive assumption of Gaussianity. However, we
believe that with some additional technical machinery, more general conclusions can be
achieved and this connection among indicators of chaoticity may be strengthened.

4 Conclusions

In this paper, a Gaussian ED statistical model has been constructed on a 6 N-dimensional
statistical manifold M. The macrocoordinates on the manifold are represented by the ex-
pectation values of microvariables associated with Gaussian distributions. The geometric
structure of M, was studied in detail. It was shown that M is a curved manifold of constant
negative Ricci curvature —3 N . The geodesics of the ED model are hyperbolic curves on M.
A study of the stability of geodesics on M, was presented. The notion of statistical volume

elements was introduced to investigate the asymptotic behavior of a one-parameter family

of neighboring volumes Fy,, (1) f {Va, (T; M) }rer+ - An information-geometric analog of

the Zurek-Paz chaos criterion was suggested. It was shown that the behavior of geodesics is
characterized by exponential instability that leads to chaotic scenarios on the curved statis-
tical manifold. These conclusions are supported by a study based on the geodesic deviation
equations and on the asymptotic behavior of the Jacobi vector field intensity Jaq, on M;.
A Lyapunov exponent analog similar to that appearing in the Riemannian geometric ap-
proach to chaos was suggested as an indicator of chaoticity. On the basis of our analysis a
relationship among an entropy-like quantity, chaoticity and curvature is proposed, suggest-
ing to interpret the statistical curvature as a measure of the entropic dynamical chaoticity.
We think this is a relevant result since a rigorous relation among curvature, Lyapunov ex-
ponents and Kolmogorov-Sinai entropy is still under investigation and since there does not
exist a well defined unifying characterization of chaos in classical and quantum physics due
to fundamental differences between the two theories. Finally we remark that based on the
results obtained from the chosen ED model, it is not unreasonable to think that should the
correct variables describing the true degrees of freedom of a physical system be identified,
perhaps deeper insights into the foundations of models of physics and reasoning (and their
relationship to each other) may be uncovered.
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